Huntsville City Schools

Pacing Guide 2016-2017

Course Honors Math Grade 7

Standards for Mathematical Practice

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning

For more:

Elaboration on each practice from the Common Core website:
www.corestandards.org/Math/Practice/

Kid-friendly language:

www.buncombe.k12.nc.us/Page/37507

Online Resources

Dan Meyer's Ted Talk about teaching math:
https://youtu.be/qocAoN4jNwc

Links to his 3-act math activities, sorted by standard:
http://blog.mrmeyer.com/category/3acts
https://docs.google.com/spreadsheet/ccc?key=0AjlqyKM9d7ZYdEhtR 3BJMmdBWnM2YWxWYVM1UWowTEE\#gid=0

Granite City Math Vocabulary:
http://www.graniteschools.org/mathvocabulary/

Other online resources

www.opencurriculum.orgis a website that curates activities from all over the web, sorted by standard.
http://map.mathshell.org/lessons.php has great formative
assessments and group activities, also searchable by standard.

Huntsville City Schools

Pacing Guide 2016-2017

Course Honors Math Grade 7

First Nine Weeks

	Accelerated Digits Topic 4 $8^{\text {th }}$ Grade Digits Topic 1		Accelerated Digits Topic 5 $\mathbf{8}^{\text {th }}$ Grade Digits Topic 3		Accelerated Digits Topic 6 $8^{\text {th }}$ Grade Digits Topic 4		Accelerated Digits Topic 12 $\mathbf{8}^{\text {th }}$ Grade Digits Topic 2	
	Irrational numbers Perfect square Real numbers Repeating decimal Square root Terminating decimal		Cube root Negative Exponent Property Perfect Cube Zero Exponent Property		Base Exponent Power Scientific notation Standard form		Commutative Property Distributive Property Infinitely many solutions No solutions	
	AL CCRS:	SchoolNet:						
	\#1 (8-NS1)	8.NS. 1	$\begin{array}{\|l\|} \hline \text { \#3 (8-EE1) } \\ \text { \#4 (8-EE2) } \end{array}$	$\begin{aligned} & \text { 8.EE. } 3 \\ & \text { 8.EE. } 4 \end{aligned}$	\#6 (8-EE4)	8.EE. 6	\#9 (8-EE7)	8.EE. 9

Standard		Approximate Pacing Number of Days
Resources		

	AMSTI: Looking for Pythagoras	
ALCOS \#2 (8-NS2):Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions.	Accelerated Digits: 4-3 to 4-5 $8^{\text {th }}$ Grade Digits: 1-3 \& 1-4 (1-5 Optional) IXL: Grade 8 F.16, F. 21 AMSTI: Looking for Pythagoras	5-6
UNIT I - RATIONAL NUMBERS AND EXPONENTS: INTEGER EXPONENTS		
ALCOS 3 (8-EE1) Know and apply the properties of integer exponents to generate equivalent numerical expressions.	Accelerated Digits: 5-1 \& 5-2 $8^{\text {th }}$ Grade Digits: 3-1 \& 3-2 IXL: Grade 8 F.1, F.2, F.3, F.4, F.5, F.6, F.7, F.8, F.9, F.10, F.11, F.12, F.13, Z.6, Z.7, Z.8, Z. 9 SMALLab: Gear Ratio Game Constant Velocity AMSTI: Growing, Growing, GrowingInv. 5 Looking for Pythagoras inv. 2-4 LTF: Module 9 - Positive and Negative Exponents	4
ALCOS 4 (8-EE2) Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of perfect squares and cube roots of small perfect cubes. Know that the square root of $\mathbf{2}$ is irrational.	Accelerated Digits: 5-3 to 5-6 $8^{\text {th }}$ Grade Digits: 3-3 to 3-6 (3-7 Optional) IXL: Grade 8 D.1, F.14, F.15, F.17, F.19, F.20, S. 7 AMSTI: Growing, Growing, GrowingInv. 5 Looking for Pythagoras inv. 2-4 LTF: Module 9 - Positive and Negative Exponents	5-6

UNIT I - RATIONAL NUMBERS AND EXPONENTS: SCIENTIFIC NOTATION

| ALCOS 5 (8-EE3) Use numbers expressed in the form of a single
 digit times an integer power of 10 to estimate very large or very
 small quantities, and to express how many times as much one is
 than the other. | Accelerated Digits: 6-1 to 6-3
 $\mathbf{8}^{\text {th }}$ Grade Digits: 4-1 to 4-3 |
| :--- | :--- | :--- |
| | IXL: Grade 8 G.1, G.2 |

Huntsville City Schools

Pacing Guide 2016-2017

Course Honors Math Grade 7

Second Nine Weeks

	Accelerated Digits Topic 14 $8^{\text {th }}$ Grade Digits Topic 5		Accelerated Digits Topic 19 $7^{\text {th }}$ Grade Digits Topic 10		Accelerated Digits Topic 21 $\mathbf{7}^{\text {th }}$ Grade Digits Topic 12		Accelerated Digits Topic 25 $\mathbf{8}^{\text {th }}$ Grade Digits Topic 11		Not Available in Digits Area Review	
2 $\frac{2}{0}$ $\frac{0}{5}$ 0 0 0	Linear equation Slope Y-intercept Rate Unit rate Constant of proportionality		Acute angle Adjacent angles Complementary angles Obtuse angle Right angle Straight angle Supplementary angle Vertical angles		Parallelogram Quadrilateral Triangle Plane Three dimensional figure Pyramid Prism Cross section		Alternate interior angles Corresponding angles Deductive reasoning Exterior angle of a triangle Remote interior angles Transversal		Triangle Rectangle Parallelogram Trapezoid Square	
	AL CCRS:	SchoolNet:								
	$\begin{aligned} & \text { \#7 (8-EE5) } \\ & \# 8 \text { (8-EE6) } \end{aligned}$	$\begin{aligned} & \hline \text { 8.EE. } 7 \\ & \text { 8.EE. } 8 \end{aligned}$	\#12 (7-G2)	7.G. 12	\#20 (8-G5)	8.G. 20	\#20 (8-G5)	8.G. 20	\#16 (7-G6)	7.G. 16

Standard		Approximate Pacing Number of Days
UNIT II - PROPORTIONALITY AND LINEAR RELATIONSHIPS: Graphing Linear Equations	Resources	

ALCOS 8 (8-EE6) Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $\mathrm{y}=\mathrm{mx}$ for a line through the origin and the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ for a line intercepting the vertical axis at b	SMALLab: Lifting Gears Game Gear Ratio Game Constant Velocity Constant Acceleration AMSTI: Moving Straight Ahead Inv 4 Thinking with Mathematical Models Inv 2 LTF: Module 9 - Goodyear Walks Using the Rule of Four Module 3 - Average Rate of Change Introduction to Related Rates Using Area/Right Triangles Module 7 - Ant and the Sugar Walk the Line	
UNIT IV -GEOMETRIC CONCEPTS		
ALCOS \# 15 (7-G5) Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	Accelerated Digits: 19-1 - 19-6 $7^{\text {th }}$ Grade Digits: 10-1 - 10-6 IXL: Grade 7 X.4, X. 5 AMSTI: Variables and Patterns Inv. 1-3 Moving Straight Ahead Inv. 1-4 Say It With Symbols Inv. 1-5 Thinking With Mathematical Models Inv. 1-3 Shapes and Designs Inv. 4 Filling and Wrapping Inv. 1-4 Stretching and Shrinking Inv. 3 LTF: Angles of a Regular Polygon	4
ALCOS \# 12 (7-G2) Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	Accelerated Digits: 21-2 \& 21-3 $7^{\text {th }}$ Grade Digits: $12-2$ \& 12-3 IXL: Grade 7	3

	IXL : Supplement with lessons on classifying triangles and quadrilaterals Triangle Inequality Theorem AMSTI: Shapes and Designs Inv. 4 Filling and Wrapping Inv. 1-4 LTF: Fill it Up- Part I Shoeprint, Trapezoids and Area Approximating Areas of Irregular Shapes Using Trapezoids Maximizing Area Triangle Area Activity	
ALCOS 20 (8-G5) Understand informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.	Accelerated Digits: 25-1 to 25-5 $8^{\text {th }}$ Grade Digits: 11-1 to 11-5 IXL: Grade 8 N.1, N.2, N.3, N.6, N.7, N.9, N. 14 AMSTI: Shapes and DesignsInv 3 LTF: Module 8 - Angles of a Regular Polygon	8
UNIT IV - CREATING, COMPARING, AND ANALYZING GEOMETRIC FIGURES: TWO AND THREE DIMENSIONAL SHAPES		
ALCOS \# 13 (7-G3) Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	Khan Academy IXL: Grade 7 X.25, X. 26 Suggest Identify 3-D figures Vocabulary: vertices, edges, faces, base Youtube videos: PBS shows slice master engage ${ }^{\mathrm{NV}}$ Unit: https://www.engageny.org/resource/grade-7-mathematics	2

	Dan Meyer's Three-Act Math Tasks: Holes	
GEOMETRIC APPLICATIONS		
ALCOS \# 16 (7-G6) Solve real world and mathematical problems involving area, volume and surface area of two-and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	Digits Student Companion Book Formula Reference Sheet IXL: Grade 7 X.18, X.19, X. 20 AMSTI: Shapes and Designs Inv. 4 Filling and Wrapping Inv. 1-4 LTF: Fill it Up- Part I Shoeprint, Trapezoids and Area Approximating Areas of Irregular Shapes Using Trapezoids Maximizing Area Triangle Area Activity Dan Meyer's Three-Act Math Tasks: Coffee Traveler Popcorn Picker Ticket to Ride Holes	6

Huntsville City Schools

Pacing Guide 2016-2017

Course Honors Math Grade 7

Third Nine Weeks

	$8^{\text {th }}$ Grade Digits Topic 12		Accelerated Digits Topic 22 $7^{\text {th }}$ Grade Digits Topic 13		Accelerated Digits Topic 26 $8^{\text {th }}$ Grade Digits Topic 13		Accelerated Digits Topic 23 $8^{\text {th }}$ Grade Digits Topic 9		Accelerated Digits Topic 24 $8^{\text {th }}$ Grade Digits Topic 10	
	Pythagorean Theorem Hypotenuse Leg of a right triangle		Base area Height of a prism Height of a pyramid Lateral area Lateral face Prism Pyramid Surface area Volume		Cone Cylinder Lateral area Sphere Surface area Volume		Congruent figures Image Reflection Rigid motion Rotation Transformation Translation		Dilation Scale factor Similar figures	
	AL CCRS:	SchoolNet:								
	\#22 (8-G7)	8.G.22	\#16 (7-G6)	7.G.16			\#17 (8-G2)	8.G.17	\#19 (8-G4)	8.G.19

Standard	Approximate Pacing Number of Days	
Resources		
GLCOS \#22 (8-G7) Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real world and mathematical problems in two and three dimensions.	$88^{\text {th }}$ Grade Digits: 12-2 \& 12-3	5

	AMSTI: Looking for Pythagoras Inv 2-4 LTF: Module 9 - Minimizing Travel Time Module 2 - Pythagorean Theorem Investigation Dan Meyer's Three-Act Math Tasks: Taco Cart	
UNIT IV - CREATING, COMPARING, AND ANALYZING GEOMETRIC FIGURES: SURFACE AREA AND VOLUME		
ALCOS \# 16 (7-G6) Solve real world and mathematical problems involving area, volume and surface area of two-and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	Digits Student Companion Book Formula Reference Sheet Accelerated Digits: 22-1 \& 22-2 $7^{\text {th }}$ Grade Digits 13-1 \& 13-2 **Hexagonal Prisms Optional** Recommended to teach Pyramids (Not on Benchmark) Accelerated Digits: 22-2 \& 22-4 $7^{\text {th }}$ Grade Digits: 13-3 \& 13-4 IXL: Grade 7 X.27, X.28, X. 29 AMSTI: Covering and Surrounding Inv. 1-4 Filling and Wrapping Inv. 1-5 Stretching and Shrinking Inv. 2-3 LTF: Solids of Revolution Surface Area and Volume Unit Dog Hole in the Bucket Box it Up We All Scream for Ice Cream Introduction to Related Rates using Volume Dan Meyer's Three-Act Math Tasks: Coffee Traveler Popcorn Picker	5

	Ticket to Ride Holes	
ALCOS 24 (8-G9) Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve real world and mathematical problems.	Digits Student Companion Book Formula Reference Sheet Accelerated Digits: 26-2, 26-4, 26-6 $8^{\text {th }}$ Grade Digits: 13-2, 13-4, 13-6 Recommended to teach Surface Area (Not on Benchmark) Accelerated Digits: 26-1, 26-3, 26-5 $8^{\text {th }}$ Grade Digits: $13-1,13-3,13-5$ IXL: Grade 8 N.31, N. 32 AMSTI: Filling and WrappingInv 3-5 LTF: Module 2 - An "Apeeling" Problem Solids of Revolution Unit Dog	5
UNIT IV - CREATING, COMPARING, AND ANALYZING GEOMETRIC FIGURES: CONGRUENCE		
ALCOS 16 (8-G1, 8-G1a, 8-G1b, 8-G1c) Verify experimentally the properties of rotations, reflections, and translations: (a) Lines are taken to lines, and line segments are taken to line segments of the same length. (b) Angles are taken to angles of the same measure. (c) Parallel lines are taken to parallel lines.	Accelerated Digits: 23-1 to 23-3 $8^{\text {th }}$ Grade Digits: 9-1 to 9-3 IXL: Grade 8 Q.1, Q.2, Q.4, Q. 6 AMSTI: Kaleidoscopes, Hubcaps, and Mirrors Inv 1-5 LTF: Module 1 - Pictures and Transformations Transformations and Tessellations Water Park	5
ALCOS 17 (8-G2) Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	Accelerated Digits: 23-4 \& 23-5 $8^{\text {th }}$ Grade Digits: 9-4 \& 9-5 IXL: Grade 8 N.10, N.12, N. 13 AMSTI:	5

	Kaleidoscopes, Hubcaps, and Mirrors Inv 1-5 LTF: Module 1 - Pictures and Transformations Transformations and Tessellations Water Park	
UNIT IV - CREATING, COMPARING, AND ANALYZING GEOMETRIC FIGURES: SIMILARITY		
ALCOS 18 (8-G3) Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	Accelerated Digits: 24-1 \& 24-2 $\mathbf{8}^{\text {th }}$ Grade Digits: $10-1$ \& 10-2 IXL: Grade 8 Q.3, Q.5, Q.7, Q.8, Q. 9 AMSTI: Stretching and Shrinking Inv 2	5
ALCOS 19 (8-G4) Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	Accelerated Digits: 24-3 \& 24-4 $\mathbf{8}^{\text {th }}$ Grade Digits: $10-3$ \& 10-4 IXL: Grade 8 N.10, N. 11 AMSTI: Stretching and Shrinking Inv 2	5

Huntsville City Schools

Pacing Guide 2016-2017

Course Honors Math Grade 7

Fourth Nine Weeks

	Accelerated Digits Topic 15 $7^{\text {th }}$ Grade Digits Topic 14		Accelerated Digits Topic 16 $7^{\text {th }}$ Grade Digits Topic 15		Accelerated Digits Topic 18 $7^{\text {th }}$ Grade Digits Topic 17	
$\begin{aligned} & \frac{2}{2} \\ & \frac{\pi}{5} \\ & \frac{0}{0} \\ & 00 \\ & > \end{aligned}$	Bias Convenience sample Inference Population Representative sample Simple random sampling Systematic sampling		Comparative inference Interquartile range Mean Median Quartile Range		Action Compound event Counting principle Dependent event Event Experimental probability Independent event Outcome Sample space Theoretical probability	
$\begin{aligned} & \frac{n}{0} \\ & \vdots \\ & \sum_{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \end{aligned}$	AL CCRS:	SchoolNet:	AL CCRS:	SchoolNet:	AL CCRS:	SchoolNet:
	$\begin{aligned} & \text { \#17 (7-SP1) } \\ & \text { \#18 (7-SP2) } \end{aligned}$	$\begin{aligned} & \text { 7.SP. } 17 \\ & \text { 7.SP. } 18 \end{aligned}$	\#20 (7-SP4)	7.SP. 20	$\begin{aligned} & \text { \#24 (7-SP8) } \\ & \text { \#23 (7-SP7) } \end{aligned}$	$\begin{aligned} & \text { 7.SP. } 24 \\ & \text { 7.SP. } 23 \end{aligned}$

Standard	Approximate Pacing Number of Days	
Resources		
UNIT III - STATISTICS AND PROBABILITY: SAMPLING information about a population by examining a sample of the population; generalizations about a population from a sample are	Accelerated Digits: $15-1,15-3,15-4,15-5,15-6$ $7^{\text {th }}$ Grade Digits: $14-1,14-3,14-4,14-5,14-6$	$\mathbf{6}$

| valid only if the sample is representative of that population.
 Understand that random sampling tends to produce representative
 samples and support valid inferences.
 ALCOS \# 18 (7-SP2) Use data from a random sample to draw
 inferences about a population with an unknown characteristic of
 interest. Generate multiple samples (or simulated samples) of the
 same size to gauge the variation in estimates or predictions.AMST:
 Samples and Populations Inv. 2-3 |
| :--- | :--- | :--- |

	Getting to Know You Measures of Central Tendency	
ALCOS \# 19 (7-SP3) Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.	Accelerated Digits: 16-5 \& 16-6 $7^{\text {th }}$ Grade Digits: 15-5 \& 15-6	2
UNIT III - STATISTICS AND PROBABILITY: COMPOUND EVENTS		
ALCOS \# 24 (7-SP8, 7-SP8a, 7-SP8b, 7-SP8c) Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. (a) Understand that just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. (b) Represent sample spaces for compound events using methods such as organized lists, tables, and tree diagrams. For an event described in everyday language (e.g. rolling double sixes), identify the outcomes in the sample space which compose the event. (c) Design and use a simulation to generate frequencies for compound events.	Accelerated Digits: 18-1 to 18-6 $7^{\text {th }}$ Grade Digits: 17-1 to 17-6 IXL : Grade 7 CC.2, CC.5, CC.6, CC.7, CC.8, CC.9, CC.10, CC. 11 AMSTI: What Do You Expect Inv. 1-4 LTF: Bulls Eye Family Fun Movie Probability	8
ALCOS \# 23 (7-SP7, 7-SP7a, 7-SP7b) Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (a) Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities. (b) Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.	Accelerated Digits: 18-7 $7^{\text {th }}$ Grade Digits: 17-7 IXL Grade 7 CC.1, CC.3,	3

Listed below are the technology standards for grades six through eight. You are to make every effort to incorporate the applicable standards into your daily classroom lessons. These standards should be noted in your lesson plans.

Alabama Technology Standards Sixth - Eighth Grade

Technology Operations and Concepts

Students will:

1. Appraise technology systems to determine software and hardware compatibility.
2. Publish digital products that communicate curriculum concepts.

Examples: Web pages, videos, podcasts, multimedia presentations
3. Explain how network systems are connected and used.

Examples: file sharing, collaborating, wireless networking
4. Determine basic troubleshooting strategies to correct common hardware and software problems.

Examples: checking connections, restarting equipment, creating a backup copy of digital data
Describing the importance of antivirus and security software
5. Use basic features of word processing, spreadsheets, databases, and presentation software.

Examples: word processing-reports, letters, brochures
spreadsheets—discovering patterns, tracking spending, creating budgets
databases-contact list of addresses and telephone numbers
presentation software-slideshow
6. Select specific digital tools for completing curriculum-related tasks.

Examples: spreadsheet for budgets, word processing software for essays, probes for data collection
7. Demonstrate correct keyboarding techniques.

Digital Citizenship

8. Identify safe uses of social networking and electronic communication.

Recognizing dangers of online predators
Protecting personal information online
9. Practice responsible and legal use of technology systems and digital content.

Examples: avoiding plagiarism; complying with acceptable-use policies, copyright laws, and fair use standards; recognizing secure Web sites Identifying examples of computer crime and related penalties
Examples: computer crime—phishing, spoofing, virus and worm dissemination, cyberbullying penalties-fines, incarceration
Citing sources of digital content
10. Describe advances in technology and effects of each on the workplace and society.

Examples: agriculture, manufacturing, medicine, warfare, transportation, communication, education

Research and Information Fluency

11. Use digital tools and strategies to locate, collect, organize, evaluate, and synthesize information.

Examples: locating—Boolean searches, graphic organizers, spreadsheets, databases collecting—probeware, graphing calculators organizing-graphic organizers, spreadsheets evaluating—reviewing publication dates, determining credibility synthesizing-word processing software, concept-mapping software

Communication and Collaboration

12. Use digital tools to communicate and collaborate at all levels from interpersonal to global.

Examples: instant messages, e-mail, blogs, wikis, collaborative authoring tools, online learning communities Demonstrating digital file transfer
Examples: attaching, uploading, downloading

Critical Thinking, Problem Solving, and Decision Making

13. Use digital tools to formulate solutions to authentic problems.

Examples: electronic graphing tools, probes, spreadsheets

Creativity and Innovation

14. Use digital tools to generate new ideas, products, or processes.

Examples: ideas—predictions, trends products-animation, video processes-models, simulations

